- +44 [0] 1925 445 225
- F +44 [0] 1925 416 518
- E info@hiden.co.uk
- w www.HidenAnalytical.com

Low temperature catalytic oxidation of H_2S over V_2O_5/CeO_2 catalysts

Our research project concerns the abatement of H₂S from a biogas stream by partial and selective oxidation to sulphur and water.

Hydrogen sulfide (H_2S) is one of the most toxic compounds usually present in fuels, oil and gas refinery processes. In particular, it's also present in little amount in biogas which is a renewable energy carrier obtained from the anaerobic digestion of organic substrates. The main compounds are CH_4 , CO_2 but there are also sulfur compounds present.

Next to the traditional catalytic oxidation processes such as the Claus process used for the abatement of H_2S , an interesting one-step solution for the clean-up of biogas from H_2S could be, for small plants, selective catalytic H_2S oxidation to sulfur at low temperatures.

The partial H_2S oxidation reaction is carried out in presence of vanadium-based catalysts that were identified, from a previous screening of catalysts, to be very active and selective to sulphur.

The catalytic tests were carried out in a fixed bed flow reactor, inserted in an electrical furnace equipped with a PID electronic temperature controller. A thermocouple is inserted in a steel sheath of inner diameter of 6 mm concentric to the reactor. The catalytic tests were performed at atmospheric pressure with a contact time of 20 ms, at temperatures between 150 and 250 °C, by feeding 200 ppm of H_2S , 100 ppm of H_2S 0 and H_2S 1 to balance. The scheme of the laboratory plant is shown in Figure 1 (Fig.1).

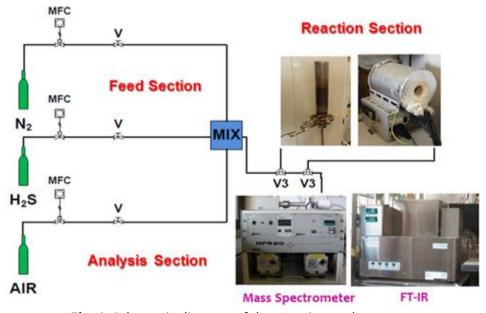
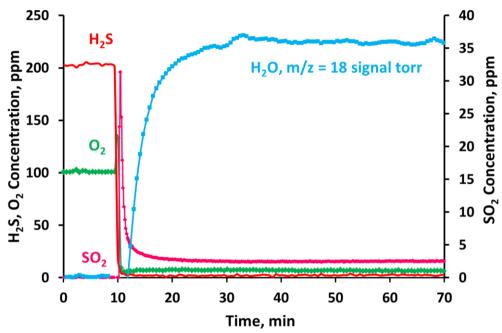


Fig. 1. Schematic diagram of the experimental apparatus


The exhaust stream (H_2S , O_2 , H_2O) was analyzed by a quadrupole mass spectrometer (Hiden HPR-20 QIC). It was equipped with a sulfur trap to prevent sulfur causing the occlusion of the capillary and damage to the fundamental parts of the analyzer. The concentration of SO_2 , which may be present at a very low concentration level in the stream

Ref: AP0877 Product: HPR-20 QIC R&D Page 1

leaving the reactor was monitored by an analyzer FT-IR Multi-gas in continuous, consisting of the spectrophotometer Nicolet Antaris IGS Thermo Electron, with a specific cell for gas.

In Figure 2 (Fig.2), the typical behavior of a catalytic test performed at 150 °C on the 20 wt% V_2O_5/CeO_2 sample is shown, by plotting the concentration profiles of the reactants (H₂S, O₂) and the products (SO₂, H₂O) during the test.

After 10 minutes, the feed stream was sent to the reactor after which it is possible to see a significant decrease of the H_2S , O_2 concentration with SO_2 and water production.

Fig.2. Catalytic activity test for the catalyst 20 wt% V₂O₅/CeO₂ at 150°C.

The concentration values of H_2S , O_2 and SO_2 reached a stationary value after 10 min on stream. The final H_2S and O_2 conversion values were 98% and 94% respectively, with a very low SO_2 selectivity (1.5%).

The water formation, indicated by the behavior of the signal m/z =18, after the initial transient time of about 20 min, was stable during the overall test time.

The catalyst has shown a good catalytic activity without evident deactivation phenomena during the test time.

Project summary by:

Vincenzo Palma and Daniela Barba Department of Industrial Engineering University of Salerno Via Giovanni Paolo II 132, Fisciano, SA, Italy

Paper Reference:

V. Palma & D. Barba (2014) "Low temperature catalytic oxidation of H_2S over V_2O_5/CeO_2 catalysts" *International Journal of Hydrogen Energy* **39** (36), 21524-21530

Hiden Product:

HPR-20 QIC R&D Real-time gas analyser

